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Abstract--Algebraic methods combined with robust regression techmques are used to calculate paleostress 
tensors from field observations on faults. Previously, such calculations have involved least-squares regression; 
however such regression esumates are likely to break down and produce meaningless results if data are included 
that are inconsistent with the main body of the data. Such inconsistent data are called outliers, i.e. measurements 
that are discrepant with respect to the majority of the observations. In two dimensions, the trend of the main body 
of the data, and their outliers, can be found by plotting the data and examining them visually. Least-squares 
regression can then be safely applied to the data-set once the outliers have been manually removed. However, the 
paleostress problem possesses a four-dimensional parameter space, and, as a consequence, this approach cannot 
be used. To overcome this difficulty, a robust regression estimator, involving the least median of squares (LMS), 
is applied to the estimation of paleostress tensors from fault plane data; not only can the parameters of the tensor 
be estimated but also the quality of the data-set assessed. For a data-set that ~s composed of data from several 
stress fields the dominant reduced stress tensor will be found by the LMS estimator. A computer program, 
PSALMS, that calculates paleostress directions using this robust estimator is presented. 

INTRODUCTION 

THE ESTIMATION of principal stress directions from fault 
plane orientations, their associated slickenline orien- 
tations and the sense-of-shear on the given fault plane is 
commonly referred to as paleostress analysis. Since the 
mid-1970s several algorithms have been developed for 
determining-either graphically or algebraically--paleo- 
stress directions from field measurements (e.g. Carey & 
Brunier 1974, Angelier 1975, 1979, 1984, Angelier & 
Mechler 1977, Angelier & Goguel 1979, Etchecopar et 
al. 1981, Angelier et al. 1982, Armijo et al. 1982, Lisle 
1987, 1988). 

For a given stress field operating in the vicinity of a 
fault, the slip orientation on the fault is determined by 
the orientation of the resolved shear stress acting on this 
fault plane. Clearly, the orientation of the resolved 
shear stress (and, hence, the orientation of fault plane 
striae) depends on the orientation of the fault plane with 
respect to the stress field. The basic assumption common 
to all studies, including the present one, is that a given 
tectonic event is characterized by one regional homo- 
geneous stress field (Wallace 1951, Bott 1959). The 
implication is that the slip direction on a fault plane is 
determined by a single stress deviator and that all faults 
which have slipped during one tectonic event moved 
independently but in a way consistent with this single 
stress deviator. 

In this study, a new approach has been followed in 
calculating paleostress directions from field obser- 
vations. The formulation of the problem is identical to 
the one suggested by Angelier et al. (1982); the statistical 
treatment of the data, however, is different and is, in 
contrast to other studies (e.g. Etchecopar et al. 1981, 
Angelier et al. 1982), capable of calculating paleostress 
directions from data which include outliers, which would 

otherwise have a deleterious effect on the calculations. 
This means that even in the presence of data belonging 
to different stress fields the statistical treatment 
employed here enables the dominant principal stress 
directions to be found. The corresponding computer 
program, P S A L M S ,  and an application are briefly 
described in the Appendix. 

FORMULATION OF THE PROBLEM 

Any stress tensor, S, is composed of an isotropic 
component, the mean stress fll with I being the identity 
matrix, and a deviatoric component, the stress deviator 
D: 

S = aD +/5I (1) 

(e.g. Etchecopar et al. 1981) in which a and/5 are a 
material constant and the lithostatic pressure, respect- 
ively, and a is always positive. Vectors and tensors will 
be denoted by boldface throughout. In the general case, 
S involves six parameters, the three main-diagonal ele- 
ments and the off-diagonal elements which are sym- 
metric with respect to the main diagonal: 

s.] 
S = 521 S22 $231, 

/ 

~S31 S32 S33J 

with Sx2 = $21, $13 = S3x and $23 = S32. 
If D, a and/5 are known, the stress field is completely 

determined and the directions of the principal stresses 
and their magnitudes are specified. The magnitudes of 
the principal stresses, however, cannot be derived alone 
from a knowledge of fault plane and striation orien- 
tations and the sense-of-shear on the fault planes. Addi- 
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tlonal inlormatlon m terms of the rheological propert ,es  
ot rocks with respect to their rupture and friction behav- 
ior and the paleo-depth (or hthostatic load) at the time 
of faulting are needed (e.g Angelier  1989) This leads 
directly to the concept of the " reduced stress tensor",  for 
which the constants a and/3 that define the magmtudes  
of the principal stresses, are chosen arbitrarily The 
orientations of the principal stresses are not affected by 
this arbitrary choice because neither the addition of the 
mean stress (].e ill) to the reduced stress tensor nor the 
multiplication of D by a positive scalar (i.e. a)  will 
change the orientation and the sense of the pr lnopal  
stresses (e g Angeher et al. 1982). Thus,  the orien- 
tations of the principal stress axes are solely determined 
by D Following Angelier et al. (1982), the colineanty 
between the resolved shear stress and the striation on 
that plane is expressed as: 

s" T . n  -- + X/(T-n) • (T.  n) - (n. T.  n) 2, (2) 

where T IS the reduced stress tensor,  n and s are the umt 
normal and the unit striation on the fault plane, and ' . '  
denotes a dot product. Equat ion (2) is identical to 
equation (5) of Angelier et al. (1982). This is the key 
equation used in solving for the reduced stress tensor, T. 

Remembering that the full stress tensor,  S, has six 
degrees of freedom an infinite number  of  different stress 
tensors, S, can be obtained f rom the reduced stress 
tensor, T, using different values of a and ft. Following 
Angelier & Goguel (1979), a and fl are fixed arbitrarily 
so that: 

T I I +  T22+ T33=1} and T 2, + T22+ T323=~.(3) 

A solution to these equations (e.g. Angel ier  et al. 1982) 
IS: 

Til = cos [x], Tz2 = cos [x + --~ - ] and 

Clearly, x is modulo 2,n. Therefore ,  by choosing a and fl 
so that equation (3) holds, the stress tensor is reduced 
from six to four unknowns and T has the form: 

T = 

Tll T12 

T21 T22 

T31 T32 

cos  Ix] 

T13 

T23 

T33 

a 

cos[x+  1 
b c 

b 

c (4) 

Thus,  the unknowns to be solved fo r - -us ing  the field 
observa t ions- -a re  the parameters  of the reduced stress 
tensor,  x, a, b and c. 

The orientat ions ot the tault planes, their striations 
and the sense-of-shear on these planes are completely 
described by three angles the dip direction of the plane, 
d, the dip of  the plane, p, and the slip angle, l (Fig. 1) 
The slip angle is the pitch of the hneatlon with the sense- 
of-shear taken into account (J c the angle is measured 
clockwise from the horizontal to the 'head '  of the slip 
vector and, therefore ,  ranges from 0 ° to 360°). The slip 
vector is taken to lie on the footwall block. A set of these 
three angles constitutes one  field observation 

ROBUST REGRESSION AND THE INVERSE 
PROBLEM 

Given a reduced stress tensor,  T, it is straightforward 
to calculate the orientat ion and direction of a slip vector 
on a given fault plane: this is the 'direct problem' .  To 
estimate the stress tensor from a knowledge of fault and 
striation orientat ions is more  difficult: this is the 'inverse 
problem' .  

Estimating T involves relating the orientation and 
direction of the theoretical resolved shear stresses on a 
set of fault planes to the observed slip directions on each 
of those planes. According to the basic assumption, the 
movement  on the faults is solely governed by one single 
regional stress deviator.  General ly,  equation (2) will not 
be exactly obeyed  for each of the measured faults in a set 
of fault planes for any single stress tensor, T (e.g. 
Angelier et al. 1982). Instead,  a tensor T is sought which 
minimizes the angular  misfit between the observed shp 
directions, given by the fault plane lineations, and the 
slip directions calculated using the estimated T This is 
the same logic that  has been applied in existing algor- 
ithms (e.g. E tchecopar  et al. 1981, Angelier et al. 1982). 

The function to be minimized in order to calculate a 

Z 
up 

$ 

.® 

X ane 

Fig 1. Cartesian reference system used for recording field obser- 
vations n and s are the umt normal and the umt striatmn vectors, d Is 
the dip direction, p the dip of the fault and t is the slip angle measured 
clockwise from the horuzontal AB towards the positive end of $. In the 
figure, s is assumed to lie on the footwall-side and since ~t points 
upwards, the hangmgwall moved down w~th respect to the footwall 
shown Th~s corresponds to a normal fault. If the direcnon of s Is 
changed (i e a reverse instead of normal fault) the shp angle t Is 

mcreased by 180 ° 
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best paleostress tensor, T, varies slightly between 
workers (e.g. Etchecopar et  al. 1981, Angelier et  al. 

1982) but they all have one aspect in common: they use 
the classical least-squares (LS) estimator in order to 
solve for a best-fit tensor. In the LS estimator, the s u m  of 
the least squares of the residuals, e,, are minimized: 

! 
2 minimize ~ e, (5) 

in which e, = y, - ~, are the differences between the 
observed (or measured), y,, and the predicted, ~,, 
values. In the formulation above, the residuals are the 
differences between the measured values of d, p and i 
and the ones calculated using T. 

LS techniques give optimum regressions of data (in a 
statistical sense) if the data to be analysed are Gaussian 
distributed and, more importantly, are free of outliers. 
An outlier is simply a measurement that is discrepant 
with respect to the trend of the majority of the data, for 
example, as a consequence of belonging to a different 
stress field or of erroneous measurement, especially the 
wrong sense-of-shear; incorrect geological interpre- 
tation, recording or keypunch errors, etc. As soon as any 
data-set contains outliers LS techniques may give spuri- 
ous answers, and, hence, are usually inappropriate for 
real data (e.g. Rousseeuw & Leroy 1987). In order to 
process data-sets containing outliers, alternative statisti- 
cal methods which can cope with the presence of outliers 
should be used. Statisticians call such methods 'robust'; 
they have been under development since the early 1960s 
(e.g. Huber 1964) but they have not yet been applied in 
paleostress analyses. In order to solve the inverse prob- 
lem, a robust approach is followed here. 

Robustness can be appreciated from the concept of 
the breakdown point, the smallest fraction of arbitrary 
contamination a data-set can sustain before a regression 
estimator will produce spurious results from a given 
data-set. The LS technique has an asymptotic break- 
down point of 0% because o n e  single outlier can influ- 
ence the best-fit estimate, causing an arbitrary result. 
The breakdown point is increased up to 50% if the least 
m e d i a n  of squares (LMS) estimator is used (a proof is 
given in section 3.4. of Rousseeuw & Leroy 1987). The 
LMS estimator was first proposed by Rousseeuw (1984) 
and provides an optimally robust measure of the scatter 
of the residuals. As Rousseeuw & Leroy (1987) point 
out, a breakdown of 50% is the best that can be achieved 
because for larger amounts of contamination (i.e. more 
than 50%) it becomes impossible to distinguish between 
'good' and 'bad' data. The LMS estimator has the 
following form: 

minimize median (e2). (6) 

The breakdown point governs the maximum number of 
outliers that can be found. In the case of the paleostress 
problem, (n - 4)/2 outliers can be detected, where n is 
the number of fault planes. 

The breakdown of LS and the success of LMS can be 
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Fig. 2. (a) A data-set with five points and their LS regression line. (b) 
The same data as in (a) but  with an outher  in the  x-direction. The LS 
regression line has been drastically influenced by this one leverage 
point  and is now almost or thogonal  to nts positnon in (a). (c) In contrast 
to the LS estimator in (b), the outl ier  does not  influence the LMS best- 

fit line. 

seen with reference to Fig. 2. Figure 2(a), contains five 
data points with a very well-fitted LS line. If, however, 
only o n e  data point is, for example, recorded wrongly, 
for instance point 1 (Fig. 2b), the LS best-fit line will 
swing, in this case, by almost 90 ° away from its original 
best-fit line, in order to minimize the sum of the squares 
of the residuals (Fig. 2b). A point like point 1 on Fig. 
2(b) is called a leverage point (or an influential outlier) 
because it affects the LS estimator dramatically. The LS 
line does not now reflect the main trend of the data 
because the residual el would have a large value and 
would dominate the sum in equation (5). Unfortunately, 
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leverage points, hke the one m this example, can n o t  be 
detected by looking at LS residuals. On FJg 2(b), point 1 
has tilted the LS line so much that the point is very close 
to the LS hne. Therefore, the residual e~ ~s small whereas 
the residuals e2 and e5 which correspond to the data 
points furthest away from the best-fit line (in Fig. 2b) will 
have the largest absolute values. Thus, if one follows the 
logic of deleting points with the largest residuals first, in 
order to fit the remaining data better,  the 'good" data 
points 2 and 5 would be deleted first. This is the problem 
that arises in using the regression diagnostics prowded 
In, for example, the paleostress program of Etchecopar  
et al.  (1981). In that case, regression diagnostics allow 
the user to identify data points which have large resi- 
duals compared to the best-fit LS line. However,  the LS 
esUmator is in n o  position to identify outliers like the 
ones described above. Therefore ,  deletion of data 
(which m itself provides no difficulties) m~ght result in 
discarding 'good' data and the final estimate of the 
paleostress directions would be meaningless. More 
sophisticated regression diagnostics, involving for 
example normalizatmn of the residuals to amplify their 
magnitude if the data are influential (e.g. Belsley et  al .  

1980, Powell 1985), may identify individual outliers but 
cannot cope with numerous outliers particularly when 
they are grouped. The LMS provides an appropriate 
alternative. 

Application of the LMS estimator to the data-set 
containing the leverage point yields the result shown in 
Fig. 2(c); the mare trend of the data ~s reflected in the 
LMS line, and the estimate is not influenced by the 
outlier. In contrast to LS, there is no analytical solution 
of equation (6) to provide the LMS estimate, but it can 
be solved approximately as a combinatorial problem 
which is straightforward and surprisingly simple, if 
laborious computationally. For each combination of two 
data points (of which there are n ( n  - 1)/2, where n is the 
number of data points), the straight line defined by the 
two points is calculated, and the median of the squares of 
the residuals of the remaining points to this line is 
computed. The LMS line is then taken to be the line (out 
of the 10 possibilities m the case of Fig. 2) that has the 
smallest median of the squares of the residuals associ- 
ated with it. The exact LMS line will be very close to this 
line, particularly for data-sets with more than a few data 
points. 

The application of the LMS estimator to fault plane 
data has major advantages over the commonly used LS 
estimator because it allows data-sets including outliers 
to be reliably processed to give paleostress tensors 
Application of the LMS estimator to the inverse prob- 
lem is essentially an extension of the method of Angelier 
et  al .  (1982). 

T H E  S O L U T I O N  O F  T H E  I N V E R S E  P R O B L E M  

Solving the reverse problem can be understood m 
terms of finding the reduced stress tensor, T, such that 
the median of the squares of the residuals is minimized, 

with the constraint equation, (2), obeyed for each fault 
plane In contrast to ordinary regression, the number of 
constraint equations is only a third of the number of 
measurements  since the constraint equation for each 
fault plane involves three measurements: d, p and i. This 
precludes the use of conventional LMS as m the program 
P R O G R E S S  of Rousseeuw & Leroy (1987). The under- 
lying implementation of LMS for problems of this type 
involves generating general solutions of the constraint 
equations,  in terms of parameters and 'corrected'  data, 
and taking as the LMS solunon the parameters  corre- 
sponding to the 'corrected'  data closest to the obser- 
vations in the LMS sense. The solution provides not only 
the paleostress tensor, T, but also allows identifieanon 
of the outhers in the data-set, from the observations 
which are not well approximated by T. 

The constraint equaUon 

y = s - T - n -  ~v/(T-n)-(T-n) - ( n . T - n )  2 = 0 

is non-linear,  soluUon of a set of such equations is 
facilitated by linearization. The linearization of 
equation (2) is done by means of a Taylor expansion, 
requiring the formulation of the partial derivatives of y 
with respect to each field observation d, p and i (con- 
tained in the vectors n and s), and the four parameters,  
x, a, b and c (contained in the matrix T). The matrix of 
these partial derivatives is called the Jacobian, J; it has n 
rows and 3n + 4 columns, where n is the number of 
faults measured The Taylor expansion of equation (2) 
using only zero and first-order terms is: 

Y ~ Y0 + J ' A x  = 0 

gwing the linearized form: 

J .  Ax  = - y o  (7) 

m which J is evaluated at x0, Y0 is y evaluated at x0, and 
Ax = x -  x 0. In these, x 0 contains the values around 
which the Taylor  expansion is undertaken; it is of length 
3n + 4, where the first 3n elements are the observed 
values of d, p and i, and the last four values are the 
starting guesses for the parameters,  x, a, b and c. In 
these, x contains the values of the observations and the 
parameters  sought. 

Solving for x, the mamx equation (7) is an u n d e r -  

determined set of linear equations involving n equations 
in 3n + 4 unknowns: there are generally infinitely many 
solutions to such sets. The solution required is the one 
that minimizes the median of the squares of the resi- 
duals; equation (6). The solution to such an under- 
determined set of equations, equation (7), is the sum of 
the characteristic (or particular) solution, xc, and the 
solution of the homogeneous system J'Xh = 0, giving 
Xh = ns(J) ,  p, where ns(J) IS the nullspace of J, and p is 
the free vector,  reflecting the under-determined nature 
of the set of equations (e.g. Strang 1988). Equation (7) 
becomes Ax = x -- x 0 = cc + x h giving: 

x = x 0 + (x~ + n s ( J ) . p ) .  (8)  

As J is of dimension n by 3n + 4, ns(J) is of dimension 
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2n + 4 by 3n + 4, and, therefore, p is of length 2n + 4, 
corresponding to the degree that equation (7) is under- 
determined. For a particular data-set and starting guess, 
x depends only on the free vector, p, as x0, xc and ns(J) 
are known. For a particular p, the median of the squares 
of the residuals on the observations can be calculated 
from the first 3n elements of e = xc + Xh, while T can be 
calculated from the last four elements of x. To find the 
least median of squares estimate of T, it is necessary to 
find the p which gives the smallest median of squares of 
the residuals. This is done analogously to the two- 
dimensional case (Fig. 2) in which pairs of data were 
used to define a line with respect to which the median of 
the residuals of the remaining data are calculated. For 
the more general problem, subsets of data are used to 
solve equation (8) for p, thus defining a trend with 
respect to which the median of the residuals of the 
remaining data are calculated. 

To see how each subset is processed, note that 
equation (8) can be rearranged to give: 

ns(J) .p -- x - x0  - xe (9 )  

which, if x is known and p is to be solved for, is an 
over-determined system of equations. Since p is of 
length 2n + 4, only 2n + 4 rows of ns(J) and the corre- 
sponding elements of the right-hand side of (9) are 
required to solve for p. Denoting this subset by ', if x is 
set equal to x 0, then (9) becomes: 

n s ( J ) '  . p  = - x ~  

which can be easily solved for p. ns(J)' is the 'reduced' 
nullspace of J.  G i v e n  p,  back-substitution into equation 
(8) gives x, and the median of squares of the non-zero 
residuals can be calculated. 

Many subsets need to be processed in order to be 
certain that a subset is chosen that contains no outliers. 
Ideally, all possible subsets, taking 2n + 4 from 3n 
measurements, should be examined, but, since there are 

4) 
ways to choose 2n + 4 from 3n items, the number of 
possible combinations increases rapidly with increasing 
n. For instance, if n = 20 (i.e. 20 fault planes have been 
measured in the field) the number of possible combi- 
nations is already ~1.5 x 1014. As a consequence, the 
procedure described above will normally be executed 
only for a limited number of times, k, with the subsets 
chosen at random from among the 3n measurements. 
For instance, in the example from Crete (see Appen- 
dix), 100 subsets (i.e. k = 100) were examined for each 
of the eight starting guesses (see Appendix). 

Once the vector p giving the LMS is found, the 
reduced stress tensor, T, can be calculated from the 
parameters x, a, b and c in the last four elements of x. 
From T, the orientations of the principal stresses can be 
determined using an eigenvalue decomposition of T. 
These LMS estimates, in contrast to LS ones, will be 
independent of the presence of outliers in the data. An 

application of the LMS approach to paleostress analysis 
using the PSALMS code is given in the Appendix. 

DISCUSSION 

The LMS approach not only allows reliable estimation 
of the paleostress tensor consistent with the majority of 
fault planes in a data-set, but also the identification of 
any outliers in this set. Noting that the first 3n elements 
in x are the calculated, 'corrected' d,p and i values which 
correspond to the LMS reduced stress tensor, T, outliers 
can be identified as those values that lie far away from 
the observations. The decision whether a residual is 
large, and hence identifies an outlier, or whether a 
residual is small and characterizes a 'good' datum is not 
obvious. In order to make this decision, the residuals on 
the observations are compared with a scale estimate, 
t~fit , calculated from the data, which, obviously, has to be 
robust itself, only depending on the 'good' data and not 
being affected by any outliers. A simple scale estimate is 
the minimal median itself; if it is multiplied by a sample 
correction factor depending on the size of the data-set, it 
approximates the classical scale estimate of LS for Gaus- 
sian distributed residuals Rousseeuw & Leroy 1987). 
The robust scale estimate used is: 

afit = 1"4826 ( 1+  n 5 m) ~/median (ei)2' 

where n is the number of observations and m is the 
number of the parameters (Rousseeuw & Leroy 1987). 
In terms of the paleostress problem, m = 4 and median 
(e,) 2 is equal to the minimal least median of squares 
obtained from a given data-set. The scale estimate is 
used to find the outliers in the data-set; data are classi- 
fied as outliers if they fail the test: 

le, I < 2.5 on,. 

As pointed out by Rousseeuw & Leroy (1987), the 
bound is arbitrary but reasonable, because, for Gaussian 
distributed residuals, only 0.5% of the residuals would 
be expected to be larger in magnitude than 2.5 ant. 

Although it is an important advance to be able to 
undertake paleostress analysis of data-sets with outliers, 
it is also important to be able to obtain a measure of the 
range of stress tensors consistent with the data. Such 
measures are easy to obtain, in the form of a covariance 
matrix, from LS analysis, but more difficult from LMS 
analysis. The best way to proceed is (Rousseeuw & 
Leroy 1987): 

(1) apply LMS to a data-set to find TLMS; 
(2) identify outliers via TLMS and e, < 2.5 ant, and 

remove these data; 
(3) apply LS on the resulting outlier-trimmed data- 

set; such analysis is referred to as re-weighted least 
squares (RLS). This analysis will give TRLS and the 
covariance matrix of the elements of TRLS; it can be 
undertaken using any of the existing LS computer pro- 
grams. 

$6 13:7-E 
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A n  ind ica t ion  of  the r a n g e  o f  T c o n s i s t e n t  w i t h  a da t a -  

set  can  be ob ta ined  by m e a n s  o f  a m o d i f i e d  Z2-test  

( W o n n a c o t t  & W o n n a c o t t  1981) a p p l i e d  to  ofit ca lcu-  

l a ted  f r o m  the  median  o f  s q u a r e s  o f  t h e  r e s i d u a l s  fo r  

each  of  the  subsets  p roces sed .  T h i s  a l l ows  t h e  iden t i f i -  

ca t ion  o l  pa leos t ress  t enso r s  w h i c h  a re  w i t h i n  a 9 5 %  

c o n f i d e n c e  in te rva l  of the  L M S  p a l e o s t r e s s  t e n s o r ;  t h e s e  

t ensor s  are  compa t ib le  w i th  t h e  d a t a  a n d  y i e ld  s ta t i s t i -  

cal ly sa t i s fac tory  solut ions  to  t h e  i n v e r s e  p r o b l e m .  T h e  

d i s a d v a n t a g e  o f  this a p p r o a c h  is t h a t  a l a r g e  n u m b e r  o f  

subse ts  n e e d  to  be  p rocessed  in o r d e r  to  p r o p e r l y  d e f i n e  

a 95% conf idence  interval .  

It  is in te res t ing  to n o t e  t h a t  t h e  r e s i d u a l s ,  a n d  

t h e r e f o r e  ~v/median (e,) 2, a r e  in r ad i ans .  G i v e n  tha t  

m e a s u r e m e n t s  o f  the  angles ,  d , p  a n d  i, a r e  u n l i k e l y  to  be  

m u c h  b e t t e r  than  _+4 °, o r  _+0.07 r a d i a n s ,  a v a l u e  o f  t h e  

leas t  m e d i a n  o f  squares  w h i c h  is an  a p p r o x i m a t e  l o w e r  

a c h i e v a b l e  l imit  would  be  0.072 = 0 .005 ;  at  th is  l imi t ,  at  

leas t  ha l f  o f  the  m e a s u r e d  a n g l e s  a r e  f i t t ed  to  b e t t e r  t h a n  

• + 4  °. T h e  c o r r e s p o n d i n g  v a l u e  f o r  _+10 ° is 0 .03 .  G i v e n  

this n a tu r a l  scale  for t he  v a l u e  o f  t h e  l eas t  m e d i a n  o f  

~quares ,  a p p r o x i m a t e  r a n g e s  fo r  a c c e p t a b l e  v a l u e s  o f  t h e  

o r i e n t a t i o n s  o f  t h e  pa teos t ress  t e n s o r  c o u l d  b e  o b t a i n e d  

o n c e  an  a c c e p t a b l e  m a x i m u m  + o n  t h e  m e a s u r e d  a n g l e s  
was  d e c i d e d  u p o n .  
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APPENDIX 

THE PALEOSTRESS PROGRAM, PSALMS vl.0. 

A computer program, P S A L M S  ("PaleoStress Analysis by the 
Least Medmn of Squares"), has been written to perform the calcu- 
laUons described above, ,t calculates paleostress orientations from 
fault plane measurements in the presence of outhers. It consists of 
three mare parts (Ftg. A1): 

(1) input and mternal recalculation of the input variables, 
(2) calculation of a starting guess for part 3 through a preliminary 

esUmate of the paleostress orientations using Angelier & Mechler's 
(1977) graphical, nght-dihedra method in conjuncUon with an addi- 
tional constramt proposed by L~sle (1987); 

(3) calculation of the paleostress directions using the least medmn of 
squares (LMS) and the constraint equation (2). 

Both the computer program and the theoretical background are 
covered m great detail by Will (1990). After a prehmmary esUmate of 
the paleostress dlrecttons (part 2), the core of the program (part 3) 
calculates the paleostress orientat~ons subject to the constramt 
equauon using LMS. The algorithm mvolves hneanzatton of the 
constraint equations, followed by soluUon of the resulting under- 
determined set of hnear equauons from a calculation of the nullspace 
of the Jacobmn. From the solution, the paleostress onentattons are 
calculated and the outhers identified. 

The program has been wntten on the Apple Macintosh using the 
software package Mathematica T M  vl.2 (Wolfram 1988). You need to 

TM have Mathematica m order to execute the paleostress program, 
PSALMS Mathematlca TM, and therefore the current version of 
PSALMS, needs at least 4 MB of RAM and can be run on a Macintosh 
SE but is much faster on a Mac SE 30 or Mac II. A copy of the 
mathemattca package, P S A L M S  vl.0, is available, as shareware, for $ 
A25 from the semor author (just send an uninitialized 3.5" disk). There 
ts no IBM version avmlable 

Esamatton o f  a starting guess for  the paleostress dtrecttons 

In the following description the data-set of Angeher et al. (1982) is 
used as an example. All figures were produced by PSALMS 

A starting guess for the unknown elements in the reduced stress 
tensor ts required m order to solve the constraint equation (2); this ts 
independent of the regression estimator employed Even though 
different starting guesses could be chosen from geological intuition or 
arbitrarily, we calculate them by the nght-dibedra method of Angelier 
& Mechler (1977) in conjuncnon with Lisle's (1987) additional con- 



Equal Area N Sigma I search straint. However, m contrast to Lisle (1988), where the user has to 
provide one likely o 1 dtrecUon, we use an internal reference grid 
consisting of 60 (this default value can be changed mteractively by the 
user) equally spaced reference directions, x ,  from which the most 
likely principal stress orientations are calculated. This provides a quick 
and a much more efficient way to find possible (71 directmns if the user 
has not already a good aprioriknowledge of the paieostress directions. 
Each indwidual reference directmn is treated as a likely candidate for 
being a]. The frequency of how often a reference direction is contained 
m the o n dibedra ns calculated and displayed graphically (Fig. A2). 
Since the principal stresses are mutually orthogonai the G3 vector has 
to lie on a plane 90 ° away from any direction that is likely to be at .  On 
that plane an array of new reference directions, zt, is set up. The 
program checks whether these reference directions are contained 
within the o3 dibedra as defined by the faults and calculates the 
likelihood of those directions being o3. The combined probabilities for 
an xr-z, panr being ol and 03 are calculated subject to Lisle's (1987) 
additional constraint. This yields a preliminary estimate of the paleo- 
stress directions (Fig. A3a). This estimate is used in the calculation of a 
starting guess for the unknowns of the reduced stress tensor, T. 

Algebraically, the orientations of the principal stresses ol, G2 and 03 
correspond to the three eigenvectors ofT,  with the direction cosines of 
the principal stresses identical to the normalized eigenvectors. In turn, 
each eigenvector is associated with an eigunvaiue which is proportional 
to the point density in the direction of the principal stress. From the 
eigenvectors and their eigenvalues, the reduced stress tensor is ob- 
tained from: 

T -- VAV -]  , (A1) 

where V ns an orthogonai matrix that contains the eigenvectors in its 

The  Pa leos t ress  Program P S A L M S  v. 1.0 

I ,n .uv~ .  F ~ " k " - n ]  P a r t 1  

i 

Par t  2 

lc-~.~o,  o f .s , . ,~  c ~ s . .  I 

Uneadzltlon of the Conwmlnt Equation, 
Cadcu~tlon of the Jacoblan, J, 
Cadculantlon of the Nullspaco, ns(J). 
~ of the Ohe . r ~ r ~  Sok~o., Xc 

Calwlation of the 
Reduoed Nuhpaco, ns(J)', 

k Cek:ulatk:m of the Free Vector, p, 
Cal~l~lon of a 8olutlon for 
.~,~a.~,:.~p, ~ Par t  3 

of I LMS IoluUOn for (to be executed r times) 

L 

LMS ~ and A.'IgIAIr AeI~ ot D~a, 
4 P~MaA~Ml Of the FMduced Stre~ Tenl~r, 
su~Rm~,e, 
Tm~ amO Plur~ of eho ~ StmsNs 

I alql~l~(m ~)f the belt.lit 8olutlon from all r I 
Sla,tlng 6 u r n  (to be Clone mznuadly by I the mmr) 

Fig. A1. Flowchart of the computer program PSALMS. The LMS loop 
should be executed for at least 100 times (i.e. k ffi 100; ~ e  text). It is 
recommended that part 3 is executed for r times with r being the 
number  of different starting guesses. By default, r = 8, this value, 

however, can be changed by the user. 
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square symbol: 0 to 20 % likelihood 
triangle.symbol: 20 to 40 % likelihood 
dlamona symooh 40 to 60 % likelihood 
cross symbol: 60 to 80 % likelihood 
dot symbol: 80 to 100 % likelihood 

Fig. A2. Likelihood of a reference direction being contained in the 
o]-dihedra. Original PSALMS output. Equal-area, lower-hemisphere 

projection. 

columns and A is the diagonal matrix of the eigenvalues. Since T is 
symmetric we obtain six constraint equations. However, there are 
seven unknowns, the three eigenvalues and the four parameters of T, 
x, a, b and c; therefore, the problem is unsolvable except for the trivial 
(or zero) solution. Therefore, in order to obtain a starting guess for T, 
the parameter x is fixed arbitrarily at a series of values in ~d4 steps in 
the range 0 to 2~. The remaining parameters a, b and c are calculated 
from equations (3) and (A1) for the eight different default values of x. 
This produces eight different starting guesses for T. Iterating from 
each of the eight starting guesses should arrive at the same LMS 
estimate for T, although it is possible that iteration might find a local 
minimum in the function, equation (7). However, our experience is 
that just one iteration is generally required from the arbitrarily fixed x 
value closest to the LMS solution. 

The LMS solution 

The LMS solution to the inverse problem, using the different 
starting guesses for T, ts found by minimizing the median of the 
squares of the residuals subject to the constraint equation (2). As 
noted in the text, this is a combinatorial problem, analogous to the 
two-dimensional case shown in Fig. 2. PSALMS calculates the Jaco- 
bian of the constraint equauon (2), its nulispace, and the vector of the 
free variables for many subsets of the data, to find the stress tensor 
which minimizes the median of the residuals. AddiUonally, a modified 
Xz-test is applied and all the paleostress orientauons that are compat- 
ible with the data at a 95% confidence level are identified. Use of 
PSALMS is now illustrated with the help of an example. 

PSALMS is applied to a set of 33 normal faults from Crete given by 
Angelier et al. (1982). Results from previous studies and from our 
algorithm using Lisle's (1987) method are shown in Fig. A3(a). For 
each starting guess, a minimal least median of squares is found from 
100 loops (i.e. k ffi 100) executed by the program. For each loop 
PSALMS calculates the outliers, the best LMS value, the four para- 
meters of the reduced stress tensor, the stress ratio (O ffi (02 - 03)/ 
(01 - (73); Angelier 1975) and the trend and plunge of ol, 02 and 03. For 
this data-set, the results produced are summarized in Table A1 and 
graphically displayed in Fig. A3(h). The LMS result that best fits the 
majority of the data corresponds to the minimum of the curve defined 
by the points in Fig. A3(b) and was found in run 3. Clearly, when one 
measurement of an observation is an outlier, the entire field obser- 
vation is treated as an outlier. Even though nt is possible to take the 
results from the best run and use the estimates for the parameters x, a, 
b and c as a new starting guess for further iteratmns, it has been found 
that this does not improve the solution in thin particular case. This is 
because the lineanzation around the values of a, b and c calculated 
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The mimmal LMS corresponc~ to an angular ht 
of better than + 5" for at least half the measurements 

PSALMS result 

e ~  1 
+ o 2  
" 03  

Number of faults: 33 
Number of ouUylng ol~ervations. 2 
The m t a n s o r  r ~  31 faults 

Fig. A3. (a) Results produced by part 2 of the program described here (bold circles) as compared with the results of Angelier et al. (1982) and 
Lisle (1988) (open triangles and open circles, respectively). The data-set analysed consists of 33 normal faults from Crete and is given by Angelier 
et al. (1982) The combined likelihood for the calculated x~-z, pair to be ol and o3 is 71%. (b) LMS vs starting guess diagram. Note that the 
horizontal axis is in radians. Starting guess 3 produced the smallest LMS value and, thus gives the best solution for these data. (c) The LMS 
solution; original P S A L M S  output showing the orientations of all principal stresses whose LMS values pass the X2-test. For starting guess 3, the 
minimal median is 0.009 (i.e at least half of the angles are fitted better than +5 °) leading to a oat of 0.16 and to acceptable answers at a 95% 
confidence level that have LMS values smaller than 0.013 (i.e. an angular misfit of less than +6.5°). Equal-area, lower-hemisphere projection. 

from the dihedra method, with the appropriate x starting guess, will 
normally apply at the solution. However, if the dihedra method gives a 
poorly constrained starting guess, further iteration is advisable. All the 
paleostress orientations plotted on Fig. A3(c) represent a region of 

parameter space that contains principal stress directions that are 
compatible with the given data-set and are appropriate solutions to the 
inverse problem. Applications of P S A L M S  to multimodai cases are 
given in Will (1990) and Wilson et aL (in press) 
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Table  A1. Resu l t s  for  the  A n g e h e r  et al. (1982) da ta - se t .  O n e  i t e r a t i o n  of  100 loops  was  
executed for e a c h  s t a r t ing  gues s  for  x ,  w i th  the  va lues  of  a, b and  c ca l cu l a t ed  f r o m  the resul t s  

of  the  d i h e d r a  m e t h o d  

B e s t  l eas t  m e d i a n  P a r a m e t e r s  of the  
S t a r t i ng  guess  of s q u a r e s  for  r e d u c e d  s t ress  Pa l eos t r e s s  

No.  of run for  x e a c h  run  t e n s o r  o n e n t a t i o n s  

1 0 0.064 

2 ~ /4  0,0196 

3 ~ /2  0 .0090 

4 3.,-¢/4 0.0123 

5 n 0.0684 

6 5~/4 0.1824 

7 3~t/2 0.1297 

8 7u/4  0.0147 

x = 0.2855 0.t 31 ---., 061 
a = 1.2627 0.2 56---, 271 
b = - 0 . 8 5 3 1  0"3 14---, 160 
c = - 1  4764 

x =  1.3646 0"166---,082 
a =  0.1199 0"224---*265 
b = - 0 . 0 5 7 2  0"3 O1 ~ 174 
c = - 0 . 2 9 7 6  

x =  1.6744 0"1 74---, 075 
a = 0.0955 02 14-- ,  264 
b = - 0 . 1 0 9 3  0"3 03 ---, 173 
c = - 0 . 2 6 7 2  

x = 2 .1866 o l  82---* 059 
a = 0.0151 0"2 04---, 181 
b = - 0 . 1 0 2 0  0"3 07--* 271 
c = - 0 . 1 8 7 3  

x = 2.6419 0177---,  020 
a = - 0 . 2 0 7 8  o2 14-- ,  163 
b = - 0 . 3 0 4 3  o3 10--* 255 
c = - 0 . 2 6 2 5  

x = 3.7233 o l  49- - ,  107 
a = - 0 . 4 6 5 4  0216--*  358 
b = - 0 . 3 4 8 3  a3 37 --* 256 
e = - 1 . 4 3 1 6  

x -- 6 .5283 o l  20- - ,  233 
a - -  2 .9400 o269-- - ,048  
b -- 0.8533 03 02--* 142 
c = 1.2419 

x = 5.7996 o l  11--* 234 
a = 1.3874 o2 75 --* 100 
b = 0 .3268 o3 11-- ,  326 
c -- 0 .4209 


